The carbon-14 isotope would vanish from Earth's atmosphere in less than a million years were it not for the constant influx of cosmic rays interacting with molecules of nitrogen (NFigure 1: Diagram of the formation of carbon-14 (forward), the decay of carbon-14 (reverse).

Carbon-14 is constantly be generated in the atmosphere and cycled through the carbon and nitrogen cycles.

And maybe not carbon-12, maybe we're talking about carbon-14 or something. And then nothing happens for a long time, a long time, and all of a sudden two more guys decay. And the atomic number defines the carbon, because it has six protons. If they say that it's half-life is 5,740 years, that means that if on day one we start off with 10 grams of pure carbon-14, after 5,740 years, half of this will have turned into nitrogen-14, by beta decay. What happens over that 5,740 years is that, probabilistically, some of these guys just start turning into nitrogen randomly, at random points. So if we go to another half-life, if we go another half-life from there, I had five grams of carbon-14. So now we have seven and a half grams of nitrogen-14. This exact atom, you just know that it had a 50% chance of turning into a nitrogen.

So with that said, let's go back to the question of how do we know if one of these guys are going to decay in some way. That, you know, maybe this guy will decay this second. Remember, isotopes, if there's carbon, can come in 12, with an atomic mass number of 12, or with 14, or I mean, there's different isotopes of different elements. So the carbon-14 version, or this isotope of carbon, let's say we start with 10 grams. Well we said that during a half-life, 5,740 years in the case of carbon-14-- all different elements have a different half-life, if they're radioactive-- over 5,740 years there's a 50%-- and if I just look at any one atom-- there's a 50% chance it'll decay. Now after another half-life-- you can ignore all my little, actually let me erase some of this up here. So we'll have even more conversion into nitrogen-14. So now we're only left with 2.5 grams of c-14. Well we have another two and a half went to nitrogen. So after one half-life, if you're just looking at one atom after 5,740 years, you don't know whether this turned into a nitrogen or not.

Once an organism is decoupled from these cycles (i.e., death), then the carbon-14 decays until essentially gone.

The half-life of a radioactive isotope (usually denoted by \(t_\)) is a more familiar concept than \(k\) for radioactivity, so although Equation \(\ref\) is expressed in terms of \(k\), it is more usual to quote the value of \(t_\).

From this science, we are able to approximate the date at which the organism were living on Earth.

Radiocarbon dating is used in many fields to learn information about the past conditions of organisms and the environments present on Earth.

But the question is, when does an atom or nucleus decide to decay? So it could either be beta decay, which would release electrons from the neutrons and turn them into protons. And normally when we have any small amount of any element, we really have huge amounts of atoms of that element. That's 6.02 times 10 to the 23rd carbon-12 atoms. This is more than we can, than my head can really grasp around how large of a number this is. Carbon is naturally in all living organisms and is replenished in the tissues by eating other organisms or by breathing air that contains carbon.At any particular time all living organisms have approximately the same ratio of carbon 12 to carbon 14 in their tissues.The halflife of carbon 14 is 5730 ± 30 years, and the method of dating lies in trying to determine how much carbon 14 (the radioactive isotope of carbon) is present in the artifact and comparing it to levels currently present in the atmosphere.Above is a graph that illustrates the relationship between how much Carbon 14 is left in a sample and how old it is.Other corrections must be made to account for the proportion of throughout the biosphere (reservoir effects).

Mar